Antiviral activity of bovine type III interferon against foot-and-mouth disease virus.
نویسندگان
چکیده
Foot-and-mouth disease (FMD) is one of the most serious threats to the livestock industry. Despite the availability of a vaccine, recent outbreaks in disease-free countries have demonstrated that development of novel FMD control strategies is imperative. Here we report the identification and characterization of bovine (bo) interferon lambda 3 (IFN-λ3), a member of the type III IFN family. Expression of boIFN-λ3 using a replication-defective human adenovirus type 5 vector (Ad5-boIFN-λ3) yielded a glycosylated secreted protein with antiviral activity against FMD virus (FMDV) and vesicular stomatitis virus in bovine cell culture. Inoculation of cattle with Ad5-boIFN-λ3 induced systemic antiviral activity and up-regulation of IFN stimulated gene expression in multiple tissues susceptible to FMDV infection. Our results demonstrate that the type III IFN family is conserved in bovines and boIFN-λ3 has potential for further development as a biotherapeutic candidate to inhibit FMDV or other viruses in cattle.
منابع مشابه
Inhibition of Foot-and-Mouth Disease Virus Replication by Hydro-alcoholic and Aqueous-Acetic Acid Extracts of Alhagi maurorum
Foot-and-mouth disease (FMD) is a major infectious disease of cloven-hoofed animals that is caused by the FMD virus (FMDV). This disease has significantly adverse economic impacts; therefore, rapid control measures are urgently. Traditional ranchers in Iran use Alhagi maurorum Medik. to treat FMD; therefore, we aimed to examine the antiviral activity of methanolic, ethanolic, and aqueous-acetic...
متن کاملBovine type III interferon significantly delays and reduces the severity of foot-and-mouth disease in cattle.
Interferons (IFNs) are the first line of defense against viral infections. Although type I and II IFNs have proven effective to inhibit foot-and-mouth disease virus (FMDV) replication in swine, a similar approach had only limited efficacy in cattle. Recently, a new family of IFNs, type III IFN or IFN-λ, has been identified in human, mouse, chicken, and swine. We have identified bovine IFN-λ3 (b...
متن کاملExpression of porcine fusion protein IRF7/3(5D) efficiently controls foot-and-mouth disease virus replication.
UNLABELLED Several studies have demonstrated that the delivery of type I, II, or III interferons (IFNs) by inoculation of a replication-defective human adenovirus 5 (Ad5) vector expressing IFNs can effectively control foot-and-mouth disease (FMD) in cattle and swine during experimental infections. However, relatively high doses are required to achieve protection. In this study, we identified th...
متن کاملAbility of foot-and-mouth disease virus to form plaques in cell culture is associated with suppression of alpha/beta interferon.
A genetic variant of foot-and-mouth disease virus lacking the leader proteinase coding region (A12-LLV2) is attenuated in both cattle and swine and, in contrast to wild-type virus (A12-IC), does not spread from the initial site of infection after aerosol exposure of bovines. We have identified secondary cells from susceptible animals, i.e., bovine, ovine, and porcine animals, in which infection...
متن کاملAssessment of the Immunogenicity of Foot and Mouth Disease Vaccine Produced by Razi Institute against Types of A13, A15 and O2010 of FMD Virus
Background and Aims: Foot-and-Mouth Disease (FMD) is a highly contagious infectious disease of livestock which has made a barrier to hygiene causing severe loss in livestock and their products. The aim of this study was the assessment of antibody response against foot and mouth disease virus types A13, A15 , O2010, after injection of FMD vaccine candidate produced by Razi Institue. Mater...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Virology
دوره 413 2 شماره
صفحات -
تاریخ انتشار 2011